
Backups Using Storage Clusters!
!
!
!
!

Mentors: David Kennel, Cindy Valdez, Sonny Rosemond, Timothy Hemphill (DCS-CSD)!

Introduction!
Los Alamos National Laboratory generates huge amounts of data which represent
immense time investments and are of vital importance to various defense and
energy projects. To prevent any data loss, it is crucial for the laboratory to possess
easily accessible backups. The current backup solutions are failing to keep pace with
growing amounts of data, either taking too long to restore from or being too costly.
Our project sought to implement a new design of commodity cluster storage
system, using the open source projects ownCloud and GlusterFS, which is both
cost and time efficient.

Conclusions!
Our prototype system was successful in its basic tasks: to provide OwnCloud to various
client operating systems, store data from ownCloud to GlusterFS volumes, and geo-
replicate these volumes across tiers.. Additionally, Tier 2 was successfully automated to
replicate data form Tier 1 as well as to conduct power cycling of its subdivisions. While the
design shows promise, we believe that the issues encountered with ownCloud file
permission preservation and data corruption render it impractical at present.

Future Work!
•  Submit a bug report to ownCloud to fix the file permissions and corruption issues.
•  Further investigate the scaling capability of ownCloud and GlusterFS.
•  Test the use of multiple ownCloud servers to handle large numbers of clients

concurrently, making sure all servers can access the same data.
•  Test Infiniband interconnects with Gluster, particularly whether geo-replication supports

Infiniband

ownCloud!
•  This open source application is designed to provide synchronization between

various client devices and a cloud server.

•  ownCloud client applications are provided for a variety of operating systems
and will automatically synchronize user specified files and directories with the
datastore of a remote server.

•  The server provides a PHP web interface, through which files may be
manipulated and restored in the event of deletion.

GlusterFS!
•  Open-source distributed file system, currently on version 3.5.1.

•  Gluster is primarily managed by a system daemon, glusterd, which controls
connections between nodes arranged into pools. Each node contributes one or
more disk locations, referred to as bricks, to Gluster's logical volumes. One or
more volume can be created per pool.

•  For our system, ten of the nodes hosted Gluster volumes and were divided into
three groups: the first (tier 1) containing two nodes and acting as the primary
storage space of the system and the other two (collectively, tier 2) producting
and storing copies of tier 1’s data through Gluster’s geo-replication process.

Design !
Our system consisted of two storage tiers, the first acting as the primary storage
space for backups and the second providing redundant duplicates of the first. The
second tier was divided into two groups, which alternate on the task of
synchronizing with the first tier. By keeping at least one of second tier’s
subdivisions offline and powered down at all times, we hoped to ensure that its
copy of user data survives even disastrous failures.

Contact Information!
Joshua T. A. Davies: josuatadavies@gmail.com

Garrett W. Ransom: garrettwransom@gmail.com
Nicole M. Shaw: nmsaavedra26@gmail.com

Scripts!
We created four separate scripts to automate most system management:
§  Tier Script

§  Acts on each specific Gluster tier.
§  Activates and deactivates Gluster volumes and geo-replication between tiers.

§  Nodectl Script
§  Directly controls individual nodes within tiers.
§  Provides power state information, and remotely controls power up and down

§  Switch Script
§  Uses tier and nodectl to alternate between tiers 2a and 2b. By integrating this

script into a crontab, the process of tier switching was completely automated.
§  Restore Script

§  Run manually, this script duplicates data from a tier 2 subdivision back to tier 1.

Issues
We encountered a number of setbacks during the installation and configuration of this
design. Some of these problems have been overcome, while others were unable to be
resolved and remain as hindrances for this design.

1.  Originally, ownCloud failed to properly upload files larger than 2 GB in the web

interface and larger than 4 GB in the desktop clients. An update to PHP resolved this
issue for the web interface. Additionally, we discovered that large uploads were indeed
possible via desktop clients, with our supposed issue actually being the result of a faulty
client progress bar.

2.  File permissions were not preserved from the original files in the local folder from all
clients. ownCloud uses a global mask that will set all the permissions to default. We
were not able to find a way to change this in the configurations.

3.  We discovered that if we deleted a file in our local folder for the client, and then tried
to restore the same file from the app client, files 2 GB and larger were corrupted both
by the Mac OS X client , the Linux client, and the Windows client. Examination of hex
dumps from uploaded and downloaded files revealed that corruption consistently
began at byte 0x7fffffff, which sits precisely on the 2GB limit. Our examination of the
corrupted areas in files has led us to believe that this error is the result of a buffer
error, where portions of the file are continuously reread and used to construct the
remaining data of of the file. Correcting this bug would require alteration of the
ownCloud clients.

LA-UR-14-25971!

